

JTC Engineering Investigation

Ring thrust bearing slips behind idler shaft during installation of FPIG

By: Jessica Nicholson

Date Opened: 6/7/2021

Date Closed:

Cummins Confidential

System Background

Adjustable vs Fixed Fuel Pump Idler Gear

(ID-16) 3689611 (ID-10) 3690510 Bushing 3689612 Idler Shaft 5484099 Dowel Pin 3900257 O-Ring Seal 4954442 Cap Screw 4374074 Thrust Bearing 3685915

Adjustable: Plate thrust bearing

- Solid driving gear
- Distribution plate to adjust

Fixed: Ring thrust bearing

- Scissor driving gear
- No adjustment for lash

Failing Component and Effects

Correct Design (section view)

- **Fixed system fails**
- Thrust bearing slips behind FPIG idler shaft
- Slip occurs during installation
- Issue often goes unnoticed
	- Ring is thin
	- Changes in idler shaft position are difficult to visually identify
	- Ring is obscured by gear and idler shaft once installed
- Effects of failure
	- Idler shaft not fully connected by dowel pin, can misalign or detach
	- Efficiency loss and excess radial load occur
	- Gears fall out of mesh, short-term engine failure

Failed Design (section view)

Claims Research

Purpose and Assumptions

- Failure codes: BKTB, BKIF, BKIS
- Conduct claims research for these failure codes in two systems
	- ISX3 High performance, fixed system with ring thrust bearing
	- ISX1 High efficiency, adjustable system with plate thrust bearing
- Only ISX3 can experience slipped ring failure, compare results to ISX1
- Full system failures due to slipped ring may not generate claims
	- Failed engine deemed not repairable, replaced
		- Failure mode never investigated
	- Slipped thrust bearing ring not discovered as the failure mode
		- Ring is thin and difficult to identify if slipped
		- Slipped ring causes entire gear train to stall, no clear source of failure
- Some rings may be identified as the failure mode and generate a claim

Search Criteria and ISX3 Initial Results

- Claims search criteria to identify thrust bearing failures
	- Two engine name searches: **ISX3 and ISX1**
	- Heavy duty engine group, 15 Liter, JEP, all regions
	- Build month range: 01/2007 to 07/2021
	- Failure codes: BKTB, BKIF, BKIS
- Plots all failures of ring (ISX3) or plate (ISX1) thrust bearings, idler gear, and idler shaft among build volume
- Slipped ring can cause multiple failure modes in the ISX3 system
- MAB plots show all failures of the idler gear, idler shaft, and ring thrust bearing, regardless of failure mode

8

ISX3 – RPH and CPE Plots

- Build volume: 113,866, Claims: \vert , Average RPH = \vert
	- \cdot BKTB: \blacksquare , BKIF: \blacksquare , BKIS: \blacksquare
- Average replacement $cost = $2,864.12$, Average $CPE = 7.67

ISX3 – Claims Research Results

- Table 1 in Appendix separates claims by failure mode
	- All failure modes are potentially caused by slipped ring
	- All these claims must therefore be considered in evaluating potential failure rate due to slipped ring, and in comparison to ISX1 claims research
- ISX3 plots, average RPH, cost per claim, and CPE remain unchanged
- Highest failure rate trends
	- By configuration, D103011BX03 \Box out of 23161 (RPH = \Box)
	- By location, Australia \blacksquare out of 23886 (RPH = \blacksquare)
- Other locations and configurations have below average RPH

10

ISX1 Comparison

- ISX1 models have a plate thrust bearing rather than the ring
- Compare RPH and CPE of ISX1 claims data vs ISX3 for all 3 failure codes and corresponding failure modes
	- If slipped ring problem is solved, ISX3 systems should have similar failure rates to ISX1 since ISX1 cannot experience this failure mode
- Plate thrust bearing system (ISX1) experiences a significantly lower failure rate and CPE than ring thrust bearing system (ISX3)

11

ISX1 Comparison – RPH and CPE Plots

- Build volume: $468,391$, Claims: \blacksquare , Average RPH =
	- \cdot BKTB: \blacksquare , BKIF: \blacksquare , BKIS: \blacksquare
- Average replacement $cost = $10,240.43$, Average CPE = $$4.37$

Claims Research Results

- According to claims research, solving this slipped ring issue can:
	- Reduce average RPH for recorded idler gear, idler shaft, and thrust bearing failures of ISX3 systems by up to 0.268
	- Eliminate an average of \$2,864.12 in cost per prevented claim
	- Reduce average CPE from these ISX3 failures by up to \$7.67
- ISX1 system has a lower rate and cost of failure than ISX3
	- CPE difference between ISX3 and ISX1 = 7.67 4.37 = **\$3.30**
	- All ISX3 thrust rings will be replaced by the plate thrust bearing
		- ISX3 systems will experience a similar failure rate to ISX1 systems
	- This causes an expected \$3.30 CPE reduction in ISX3 engines
- Compare predicted CPE reduction to cost of implementation

Proposed Solution and Redesign

Solution and Justification

- Prevent the ring thrust bearing from slipping during installation
- **Design a plate thrust bearing for the fixed system** to replace the ring
- Opportunity to commonize the thrust bearing for both the fixed and adjustable systems; new plate design that works for both systems
- Must redesign components of fixed system to accommodate plate
	- Both systems perform the same function, are similarly assembled
	- Adjustable system does not experience the same failure mode
		- Plate thrust bearing bolted into the housing with the idler shaft
		- Cannot slip out of place or misalign the idler shaft
	- Plate thrust bearing advantages
		- Cheaper by part than the ring thrust bearing (long-term savings)
		- Proven reliable, lower failure rate shown by ISX1 claims data

Redesign Process

- Key design differences between systems
	- Idler shaft cap screw holes in different positions relating to the centerline
	- Idler shaft cap screw hole diameters are larger for the adjustable design
	- Adjustable design idler shaft is 2.3 mm narrower for plate thrust bearing
	- Adjustable design idler shaft has larger counterbore for stabilizing plate
- Fixed idler shaft redesign
	- Reduced the width of the thinner section of the idler shaft by 2.5 mm to accommodate a plate thrust bearing rather than a ring
	- Reduced the depth of the dowel pin hole by 2.5 mm to account for the additional space taken by the plate thrust bearing
	- Removed the obsolete O-ring seal and filled in the space within the idler shaft that it occupied

Redesign Process

- Commonized plate thrust bearing
	- Eliminated the ring design
	- Modified original part 3690851
		- Fit to the Idler shaft for the non-adjustable design
	- Moved cap screw hole positions
		- Accommodate difference in hole positions for both idler shafts
	- Changed hole diameters to 12.02 mm
		- Each hole fits the corresponding screw position of both idler shafts

Design Validation

Design Validation Plan

Fit Test – Thrust Bearing 3D Print

• Adjustable design

Figure 1: Aligned Fit Figure 2: Max Misalignment (side view)

Figure 4: Aligned Fit Figure 5: Max Misalignment (side view)

Figure 3: Max Misalignment (bottom view)

• Fixed design

Figure 6: Max Misalignment (bottom view)

DVA Tolerance Analysis – Thrust Bearing / Idler Shaft

- Larger cap screw holes in commonized thrust bearing
	- More slop in both systems
	- Center axes can become more offset during installation
- Center axes of idler shaft and thrust bearing must align
- Misalignment may lead to long-term issues
- Measured the edge in this figure assuming greatest possible offset / misalignment
	- Fixed system
	- Adjustable system
	- Adjustable system with original thrust bearing, for comparison

DVA Tolerance Analysis Results

- Full table of results in Appendix
- DVA measurements of each system at critical edge:
	- Each aligned system: 6.07 mm +- 0.1901
	- Narrow edge of the fixed system, misaligned: 5.07 mm +- 0.4404
	- Narrow edge of the adjustable system, misaligned: 2.94 mm +- 0.4185
	- Narrow edge of the original adjustable system, misaligned: 3.96 mm +- 0.4185
- Magnitude of misalignment must not allow thrust bearing to lose contact with the idler gear as the bushing would be exposed and leak oil
- Additional calculation using worst-case thrust bearing misalignment
	- Added clearance between gear + bushing inner diameter and idler shaft
	- Max distance from thrust bearing edge to inner gear edge: **0.958 mm +- 0.4241**
- **No significant risk** of failure due to leakage from misalignment

24

Friction Wear in Misaligned State

- Idler gear contacts thrust bearing during operation
- Large enough misalignment may create uneven friction wear
- Maximum misalignment measured by DVA tolerance analysis
- Friction wear formula: $W = KFVT = xy$, $W_1 = W_2$, $x_1y_1 = x_2y_2$
	- $W =$ Volumetric wear, $T =$ Elapsed time
	- $K = Wear$ factor constant, same on both sides, same material
	- \cdot $F =$ Normal force of the idler gear acting on the thrust bearing
	- $V = Rotational velocity of idler gear against thrust bearing$
	- $x = Rate$ of wear, loss of material
	- When $y_1 < y_2$, $x_1 > x_2$ and $x_1 = ax_2$ (a = constant)

Friction Wear in Misaligned State

- System assumptions:
	- Normal force from idler gear remains constant on both sides
	- Material is constant in the thrust bearing
	- Rotational velocity from the idler gear is the same on all sides
- Theoretically, the narrowest edge of each system experiences *"a"* times as much wear as the widest edge of the system
- In practice, however, W1 is not always equal to W2
- The level of **wear on surface remains even** regardless of misalignment
	- 1. Wear due to friction starts to become greater on narrow edge of the thrust plate
	- 2. Normal force on the narrow edge becomes lower than that on the wider edge
	- 3. This lessens the rate of wear on the narrow side compared to the wider side
	- 4. Total wear due to friction on each edge evens out regardless of misalignment

Cost Justification

Production Volume Trends

- Proportion of plate to ring thrust bearings used per year is changing
- Quantity of plate thrust bearings (3690851) is decreasing in relation to ring thrust bearings (3685915)
	- Cannot use average yearly volume to conduct cost savings analysis
- Use a recent volume to predict future volumes needed in cost savings analysis
	- Quarter 2 in 2021 multiplied by 4 for both thrust bearings

Cummins

Current Production Cost

- Production cost and volume of current components
	- Plate thrust bearing
		- Current annual volume $= 4,056$
		- Cost per thrust bearing $=$ Total cost = \$4,137.12
	- Ring thrust bearing
		- Current annual volume $= 13,592$
		- Cost per thrust bearing $=$ Total cost = \$27,863.60
	- Non-adjustable idler shaft
		- Current annual volume $= 13,592$
		- Cost per idler shaft $=$ \blacksquare Total cost = \$125,880.95

• Total annual $cost = $157,881.67$

Supplier Production Quotes

- New production volume needed for redesigned plate thrust bearing
	- Plate thrust bearing will replace all ring thrust bearings
	- New production volume is sum of demand for both thrust bearings = **17,648**
- Production cost and volume of redesigned components, from suppliers
	- Plate thrust bearing
		- Projected annual volume = $17,648$ Total cost = $$21,354.08$
		- Quoted cost per thrust bearing $=$ Cost savings $=$ \$10,646.64
	- Non-adjustable idler shaft
		- Projected annual volume = $13,592$ Total cost = $$125,834.74$
		- Quoted cost per idler shaft $=$ \blacksquare Cost savings = \$46.21
- Total annual cost $= $147,188.82$ Annual cost savings $= $10,692.85$

30

Fixed Costs, Claims Savings, and Break-Even Point

- Fixed costs and production lead-time
	- Thrust bearing tooling modification $cost =$, lead time 10 weeks
	- Idler shaft tooling modification $cost =$, lead time 8 weeks
- Break-even point $= 1.68$ years
	- Considering annual production savings vs all fixed costs
- Claims cost comparison
	- Predicted reduction in ISX3 CPE with design change $= 3.30
	- ISX3 average annual production volume $= 8,133$
	- Projected annual claims cost reduction / savings = \$26,838.90
- This redesign creates a cost reduction in both production and warranty costs
- Total annual savings $= $37,531.75$, Actual break-even point $= 0.48$ years
	- Considering annual production savings **and projected claims reduction**

31

My Recommendation

Next Steps / Recommendation

- Prototypes and remaining validation tasks
	- Thrust bearing prototypes have arrived, follow up for idler shaft prototypes
	- Once idler shafts arrive, assemble to a Rottweiler engine and conduct a longterm operation test to ensure that the new components cause no failures
		- Referenced in validation plan
		- Piggyback test would be appropriate
		- Monitor for oil leakage and markings on bushing or idler shaft after test
- Implementation in production
	- Create CR from CTR #4126105, direct obsolete / supercede with new part #s
	- Have drafting create new prints and a DQR for both new part numbers
- Monitor ISX3 system claims after implementation to ensure reduction in failures

33

Appendix

ISX3 – Claims per Failure Mode and Potential Cause

Failure		Failure	Failure Description	Number	Potentially caused by
Code	Part Failed	Mode		of Cases	slipped thrust ring?
BKTB	Thrust Bearing	BR	Broken, cracked		Yes
		BE	Bent, distorted	0	N/A
		ER	Eroded, pitted, flaked, debonded, fretted		Yes
		АP	Application problem	0	N/A
		AW	Adjusted wrong, calibration incorrect	0	N/A
		CU	Cosmetically unacceptable	0	N/A
		DR	Clogged, plugged with foreign material, dirt/debris	0	N/A
		ID	Indeterminate		Yes
		IO	Inoperative	0	N/A
		LO	Leaks oil	0	N/A
		МA	Misassembled	0	N/A
		MI	Campaign	0	N/A
		MМ	Mismachined, oversize, undersize, incorrect protrusion	0	N/A
		NO.	Noisy	0	N/A
		RP	Replaced	0	N/A
		SE	Seized, stuck, scored, scuffed, spun		Yes
		TI	Timed incorrectly	0	N/A
		WM	Workmanship	0	N/A
		WO	Worn	0	N/A
		WP	Special (wrong parts used in assembly)	0	N/A

Table 1

Cummins

ISX3 – Claims per Failure Mode and Potential Cause

ISX3 – Claims per Failure Mode and Potential Cause

Cummins

Redesigned Assemblies

Fixed Design:

Adjustable Design:

DVA Tolerance Analysis – Thrust Bearing / Idler Shaft

DVA Tolerance Analysis – Thrust Bearing / Idler Shaft

