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Introduction

This project evaluates different composite material structures, arrangements, and volume
fractions among other factors to identify the ideal composite types and conditions for application
in marine turbine blades. Carbon fiber inclusion in an ATSP resin matrix material is the focus
due to its high relative strength while lightweight. Several trials, simulations, and sample tests
are possible, but this report focuses on a series of FEA simulations with results that have
identified ideal conditions for the composite material in our turbine blade application. It provides
data from these simulations that can be used to choose or justify chosen qualities such as
material, volume fraction, or structure, as well as provide support for any cost-benefit analyses.
Along with comparative analysis conclusions, this report provides some recommendations that
can expand on current results and help reach a greater understanding of what is needed for a
composite material in our turbine blade application.

Evaluated Material Properties

This analysis was performed on a two-phase composite material. One phase contains the
carbon fiber, an elastic transversely isotropic material produced with particular strength along
the fiber axis. The other phase contains an isotropic resin ATSP material. The mechanical
properties of the two materials that form the composite are listed in Table 1.



Table 1: Mechanical Properties of Materials Within the Composite

Carbon Fiber ATSP Resin - Matrix Material
Density (kg/m?®) 1750 1300
Axial Young’s Modulus (GPa) 294 3
In-Plane Young’s Modulus (GPa) 15*
In-Plane Poisson’s ratio 0.2*
Transverse Poisson’s ratio 0.3* 0.34
Transverse Shear Modulus (GPa) 7* *Assumed value in literature

All simulations measure each of the following composite material properties and how they
change under certain conditions.

- Longitudinal Elastic modulus E1: The elastic modulus along the axial fiber direction
- Transverse Elastic moduli E2 and E3: Two axes perpendicular to fiber inclusion

These elastic moduli represent the stress over strain of the composite material. Larger elastic
moduli on all three axes are ideal, because this means a stiffer material. The blade will be
subject to high stresses, and it is ideal for the blade to experience low deformation or strain
relative to stress so the blades retain their shape and maintain performance. It is also best for
the material to have a high yield strength to reduce the likelihood of permanent deformation.

- Longitudinal and Transverse and Shear moduli

Similar to the elastic moduli, these shear moduli represent a stress over strain ratio but for the
three planes of shear. This includes two planes that correspond to the longitudinal direction
(G12 and G13) and one transverse (G23) plane. The higher the shear moduli, the stiffer the
composite is in the event of stress along shear directions.
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Figure 1: Elastic and Shear Moduli in a Fiber Composite



Simulated Conditions and Considerations

Each of these properties have been calculated through FEA simulation under alterable
conditions that are relevant to the composite material. All configurations have periodic boundary
conditions, which describes a composite where repeating cells have the same fiber inclusion
structure rather than forming a truly random structure. Only one unit cell is simulated per
iteration since Digimat is limited to one generated pattern. We therefore cannot simulate a
non-periodic truly random arrangement of fibers, but this is not expected to significantly change
results.

Uniform fiber arrangement: This describes a fiber inclusion structure with a consistent pattern
throughout. All fibers are equal in diameter, oriented the same direction, and equidistant from
one another as shown by the unit cell geometry in Figure 2. Assuming the manufacturing
process produces a uniform inclusion pattern, the simulation of this condition will be most
applicable.

Random fiber arrangement: The manufacturing process may lead to a random distribution of
fibers within the composite structure rather than uniform. In this case, a simulation for the
condition of random inclusion is applicable. Since random configurations vary, this simulation
must be conducted with multiple iterations such as Figure 3 and plotted averages unlike the
uniform simulation.

Figure 2: Uniform Arrangement Figure 3: Random Arrangement Iteration

Different volume / mass fractions of fiber: For both uniform and random inclusion, | performed a
simulation to see how each of the evaluated properties responds to changes in volume fraction
of the included fiber. Each property is expected to increase in value as volume fraction
increases, but this quantitative simulation will demonstrate how much volume fraction impacts
material properties with plotted data and a comparative model of formulas showing the
relationship between these variables. The results of this simulation may be used in a
cost-benefit analysis if considering the use of other volume fractions or evaluating current ones.




Figure 4: Vol. Fraction = 0.3 Figure 5: Vol. Fraction = 0.5 Figure 6: Vol. Fraction = 0.7

Other Considerations: Based on needs identified from my simulation results below, the two
factors defined here have a critical impact on current results and are variables in the additional
simulations | have recommended to generate a full and accurate set of results.

Delta 6, the window size proportional to fiber diameter:

6 = L/d (window length / fiber diameter). The greater the delta value, the larger the window size
proportional to the fiber diameter and the more fiber inclusions present in the window. This value
is important to the random arrangement simulation, as a larger delta is expected to yield results
with less variation between samples and may converge to the uniform simulation results as
delta increases.

Aspect ratio, the ratio of fiber length to diameter:

Fiber length in terms of its size proportional to fiber diameter. Changes in aspect ratio may have
an impact on each of the material properties, so we must find the correlation between aspect
ratio and these properties. All else constant, we may expect material properties to increase in
value as aspect ratio increases.

Figure 7: Small vs Large Aspect Ratio

Mesh Size Impact on Results

The smaller a mesh, the more accurate we expect FEA analysis results to be. Due to this, |
conducted a simulation to measure each property at different mesh sizes and plot the changes
in each property for these changing mesh sizes. Mesh size for this simulation is measured as a
percentage of fiber diameter. Delta and volume fraction were both constant for this evaluation
and it was conducted on the uniform structure. The purpose of this evaluation is to identify the



mesh size at which properties do not experience significant change with further mesh size
reduction, as this is the point where the model is likely to have converged to an accurate result.

Of three Digimat mesh types, the Conforming (tetra) mesh was chosen due to its consistent
sizing and adaptable elements at the borders between phases.

o  Conforming (tetra) - evaluated mesh

o  Non-conforming (voxel)

o  Conforming extruded (hex-dominated)

Figure 8: Mesh size = 5% Figure 9: Mesh size = 10% Figure 10: Mesh size = 20%

Figures 11 and 12 show us that each property converges to a likely accurate value as expected
when mesh size decreases. All properties apart from the longitudinal elastic modulus E1 seem
to cease any significant change below a mesh size of 10% of fiber diameter. The longitudinal
modulus, on the other hand, experiences the greatest variation and does not yet converge to a
value with the current analysis due to Digimat limitations on mesh size. | could not simulate a
mesh size lower than 5% of fiber diameter to find a good convergence point.

Based on these results, | conducted each simulation with a mesh size at or similar to 10% of the
fiber diameter.



Mesh Size vs Simulated Material Properties
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Mesh Size vs Simulated Material Properties
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Volume / Mass Fraction vs Material Properties, Uniform Arrangement

Each material property increases as the volume fraction of the fiber increases because the fiber
axial and in-plane Young’s moduli are greater than that of the ATSP material. The transverse
Poisson’s ratio of the fiber is similar to the ATSP material Poisson’s ratio, so the relationship
between the volume fraction and the longitudinal elastic modulus E1 as shown in Figure 13 is
approximately linear. The other material properties, however, have a different growth pattern



with increases in volume fraction. Each plot is paired with a formula-based model that quantifies
the relationship between the material property and volume fraction. This model can be used to
perform cost-benefit analysis in the consideration of different volume fractions as needed.

Volume Fraction vs Critical Material Properties for Constant Fiber
Diameter and Unit Cell Geometry
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Volume Fraction vs Critical Material Properties for Constant Fiber
Diameter and Unit Cell Geometry
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Each volume fraction also corresponds to a mass fraction, but mass fraction has a slightly
different relationship to material properties due to the relationship between mass fraction,
volume fraction and density. Figures 15 and 16 below show the same material property trends
but as a result of changing mass fraction.

Mass Fraction vs Critical Material Properties for Constant Fiber
Diameter and Unit Cell Geometry
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Figure 15



Mass Fraction vs Critical Material Properties for Constant Fiber
Diameter and Unit Cell Geometry
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Figure 16

Volume / Mass Fraction vs Material Properties, Random Arrangement

The manufacturing process may generate a composite with random fiber arrangements rather
than uniform as assumed in the above simulation. This simulation repeats the volume fraction
vs material properties simulation for randomized structure iterations similar to the cell shown in
Figure 3. Since random arrangement does not have a specified structure but rather several
different possibilities, | generated results for 3 different random iterations and plotted the
average of these for each material property. This average can be compared to the Uniform
results and the standard deviation gives an idea of variation and accuracy. As seen in Figures
17 and 18, the random arrangement simulation yields similar material property vs volume
fraction trends to the uniform results, but the values vary significantly in percent difference
shown by Figures 21 and 22.



Material Property Values [MPa]

Material Property Values [MPa]
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Volume Fraction vs Critical Material Properties for Constant Fiber

..
e E1
o £2
. £ 3
- 2
G 12
= ® G123
o e G13
® StDevE_1
. . . . . ' ......... Linear (E_1)
0.1 02 03 0.4 05 06 07
Volume Fraction
Figure 17
Volume Fraction vs Critical Material Properties for Constant Fiber
Diameter and Random Geometry
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Mass Fraction vs Critical Material Properties for Constant Fiber
Diameter and Random Geometry

200000
— 180000 y=652352+174179x+28112 o
o
S 160000 ey
£ 140000 e E1
=
= ..
S 120000 o E2
%“ 100000 . E3
© 80000 G_12
g i
T 60000 o e G623
% 40000 ® G_13
=
2000 (+i-vi—r——oo—o0hbb— Poly. (E_1)
0 8 8 (] 8 8 8
0 0.1 02 03 0.4 05 06 0.7 038
Volume Fraction
Figure 19
Mass Fraction vs Critical Material Properties for Constant Fiber
Diameter and Random Geometry
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Figure 20

The random arrangement simulation yields consistently higher results, but the difference
between the random and uniform results decreases as the volume fraction increases. This is

likely due to the fact that there are fewer possible random configurations of the fiber as volume
fraction increases. Figures 21 and 22 show this trend by plotting the percent difference between

the random and uniform arrangement results vs corresponding volume fraction.
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Random Geometry Results Percent Difference from Uniform
Geometry vs Mass Fraction
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Figure 21
Random Geometry Results Percent Difference from Uniform
Geometry vs Mass Fraction
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Figure 22

The high standard deviations in the random arrangement simulation and the large variation
between the uniform and random results indicate that the random results may not be highly
accurate. Standard deviation can be decreased by increasing the sample size, which would
require automation of the data collection within the simulation in order to gather results for
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several iterations. A larger delta would likely decrease standard deviation and the percent
difference from the uniform results. This table shows that as delta increases, the sample size
necessary for an accurate evaluation decreases.

Table 1. Window sizes and corresponding numbers of samples

Window size § 3 6 12 24 48
Number of samples 300 200 100 50 20

Using these guidelines, this random arrangement simulation should be performed again at a
high delta value with the appropriate corresponding number of samples. This should create
small variation and results comparable to the uniform analysis.

Recommended Next Steps

Our composite should be predictable and have consistent material properties, so the high
variation seen between iterations of random arrangements must be addressed. Inconsistent
properties in manufactured composites can lead to stress failure. We know that a larger delta
will likely decrease variation, so any manufactured parts or samples of the composite must have
a delta value that ensures minimal possible variation from the predicted material properties. For
this, it would be valuable to conduct a simulation that answers the following question: At what
delta does variation become negligible, and are the material property results at this size
significantly different from uniform geometry results?

It is possible to find this answer by repeating the random geometry simulation for a changing
delta vs material properties. Abaqus allows window size to be altered, unlike Digimat. An
automated simulation and data collection system must be developed in order to gather an
appropriate number of sample sizes for each delta size. Volume fraction becomes a constant,
but this simulation can be repeated for different volume fractions.

Differences of fiber length in relation to fiber diameter may also have a small impact on the
evaluated material properties. This measurement is the aspect ratio, or ratio of fiber length to
fiber diameter. An Abaqus plugin allows for changes in aspect ratio. This simulation would likely
be performed at meso scale rather than micro, as fiber length can only be as long as the
window allows it to be in micro scale.

At the meso scale, the evaluated two-phase carbon fiber and ATSP material may be organized
into layered components or woven yarn. This adds an additional variable that may impact the
material properties of the larger composite structure. Volume fraction, delta, and fiber length can
be re-evaluated for these meso-scale structures to evaluate if the structures improve or are a
detriment to the measured properties of the two-phase composite.
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