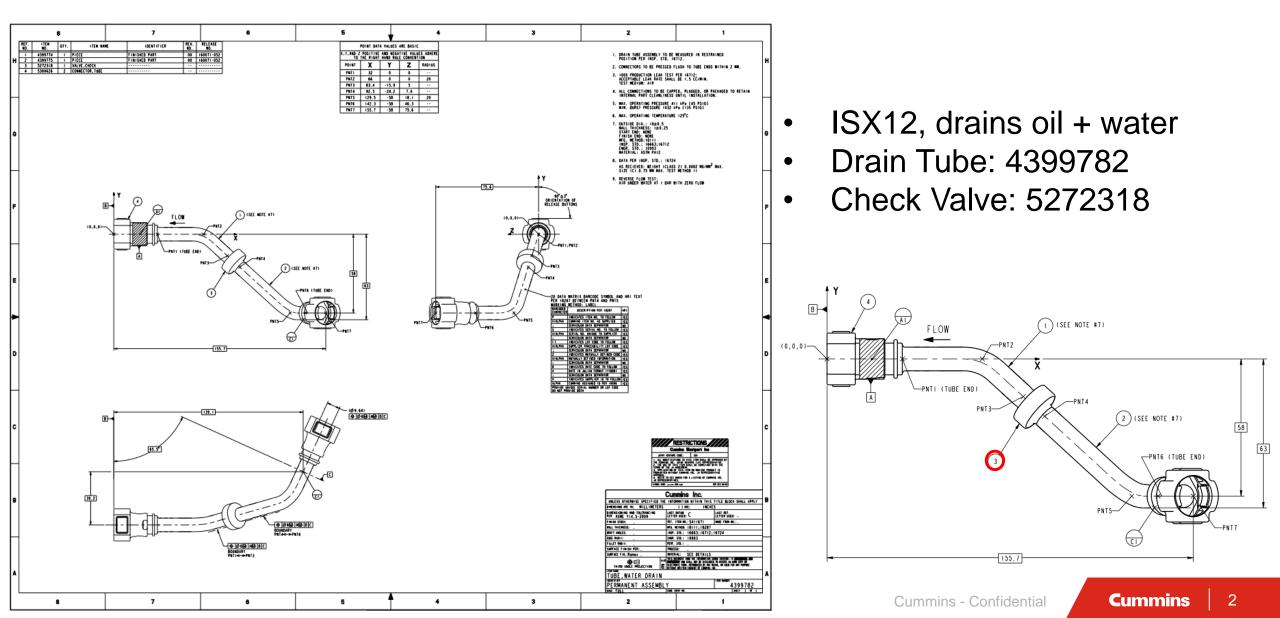
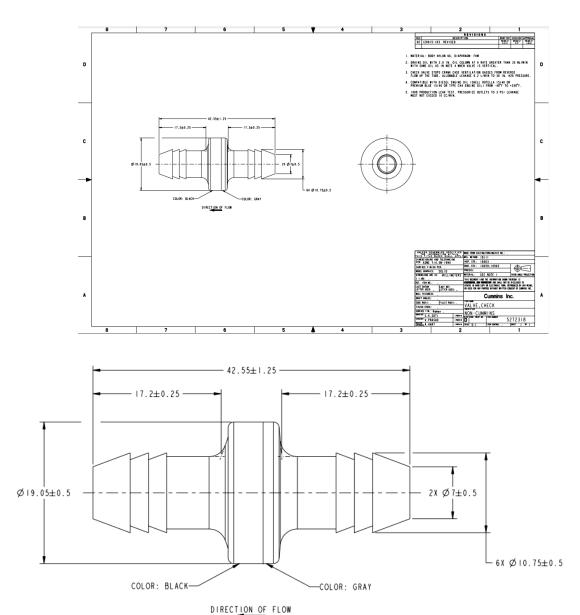


JTC Engineering VPCR Response ISX12 Water Drain Tube Leaking from Check Valve into Turbo and CAC


By: Jessica Nicholson

Date Opened: 8/16/2021

Date Closed:


Cummins Confidential

System Background

System Background

- Supplier:
 - Supplier #
 - •
- Check Valve:
 - Controls direction of oil flow
 - Membrane inside valve opens for flow
- O System Specifications:
 - Max operating pressure = 411 kPa
 - Min burst pressure = 1032 kPa
 - Max operating temperature = 125 C

= Censored for confidentiality

Failing Component and Effects

- Oil flows from the oil pan into the turbocharger and CAC
 - Check valve fails to control oil flow in correct direction
 - Some drain tubes are assembled in the wrong direction, causing a backwards check valve
 - This failure can damage both the turbocharger and CAC
- Drain tube is brittle, breaks, and experiences leaks
 - Internal system temperature exceeds material specs
 - Oil pressure loss
 - Oil found on other components
- Claims research supports theory of failed check valve causing oil backup
 - Failed check valve claims often report oil in the turbocharger or CAC as a result

Claims Research – RPH and CPE Plots

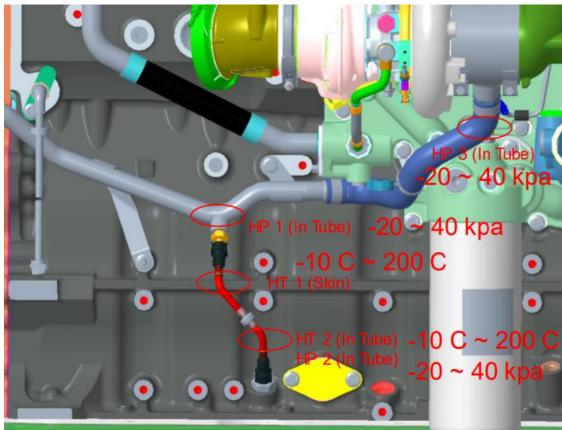
- Build volume: 12,302, Claims: Average RPH =
 - Failed check valve: , leaking drain tube: , installed backwards:
- Average replacement cost = \$2,163.26, Average CPE = \$7.67

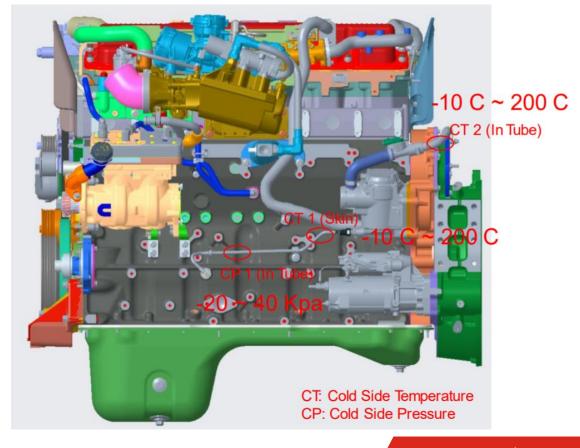
Failure Mode Investigation Results

- Check valve fails to control oil flow in correct direction
 - Drain tube installed backwards in the field / during service
 - Check valve membrane found broken in failed samples
 - Tube experiences high range of pressure fluctuation, including negative pressures
 - This may cause failure due to excess or fatigue stress
 - High internal temperature may weaken the membrane
 - Must choose new check valve with specs that match true operating conditions
- Drain tube becomes brittle and breaks upon removal or re-installation
 - Occurs on this hot side drain tube but also cold side oil drain tube
 - Regardless, exposure to high temperature over time is the cause of brittleness
 - Operating temperature exceeds material specifications at high duty cycle
 - Must choose new drain tube material with a higher specified temperature range

Proposed Solutions

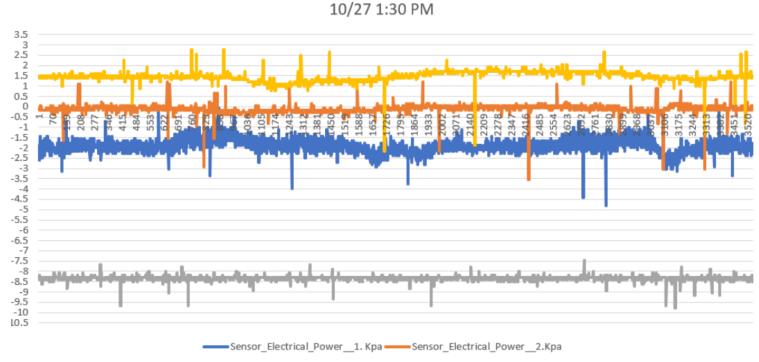
- Mark drain tube connectors to indicate direction of flow
 - This must prevent drain tubes from being installed backwards
- Choose new check valve
 - Must handle negative pressure values due to turbocharger
 - Must withstand the pressure range of the fluid within the drain tube
 - Must open to allow flow at the correct amount of pressure and close when pressure drops below this value
 - Compare specs of potential check valves with drain tube operating conditions
- Choose new tube material that can withstand greater temperature range
 - Use more heat-resistant material, must retain its ductility over time
 - Must not be prone to phase changes from long-term temperature fluctuations
 - Consider systems run at higher temperature than specs with high duty cycle


Cummins


Solution Validation

- New check valve
 - Gather pressure readings from inside of drain tube during field test / operation
 - Find pressure at which check valve opens and closes
 - Investigate check valve limit specs, compare to operational pressure readings
 - Test new potential check valves and compare to current valve
 - Must open at same pressure specified (not actual) for current check valve
 - Must have pressure limits that allow for measured pressure range within drain tube
 - Full test procedure and criteria:
 - https://cummins365-my.sharepoint.com/:w:/g/personal/ss378_cummins_com/ESrmfl7stqVCureIX9nykTABcPYmfusn3SgHqatR1KYV9w?e=YO1gno
- New tube material
 - Measure the internal operating temperature range during field test / operation
 - Compare temperature specs of current material to potential new materials
- Connector markings to indicate direction

Solution Validation – Field Test


• Internal operating pressure and temperature gauge locations

Solution Validation – Field Test

- Peak measured operating temperature = 130 C
- Measured internal operating pressure at each gauge location

——Sensor_Electrical_Power__3 Kpa ——Sensor_Electrical_Power__4 Kpa

Solution Validation – New Check Valve

- Current check valve: 5272318
- Field test pressure measurement observations
 - Pressure in drain tube above check valve (sensor 1) is consistently negative
 - Pressure in drain tube below check valve (sensor 2) averages 0 kPa
 - Check valve opens:
 - To allow drainage when internal pressure above check valve rises or below drops
 - When pressure within the tube above the check valve exceeds the pressure below
- Alternate check valve test criteria, based on drain tube function / conditions
 - Must open / close at same pressure difference as the current check valve
 - Must withstand a pressure range of -5 to 1.5 kPa by a reasonable margin
 - Pressure range determined by measured internal pressure during operation
 - Must not allow reverse flow, pass reverse flow test

https://cummins365-my.sharepoint.com/:w:/g/personal/ss378_cummins_com/ESrmfl7stqVCureIX9nykTABcPYmfusn3SgHqatR1KYV9w?e=YO1gno

Solution Validation – New Check Valve

• Alternate check valve specifications and test results comparison table:

Check Valve (Part #)	System assembly #	Assembly description	Specifications							Measured Quanitites				
			Valve diameter [mm]	Tube diameter [mm]	Length [mm]	Allowable leakage [L/min]	Min. allowable	Max. allowable temperature [F]		Fluid transfer rate standard	Opening pressure (delta p) [kPa]	Closing pressure (delta p) [kPa]	Flow rate at pressure of 3 kPa [L/M]	Burst pressure (delta p) [psi]
5272318	4399782	Water drain tube	19.05	10.75	42.55	0.2	-40	250		> 35 mL/min	>0	< -0.1433	17.67	49.67
5442592	5402614	Air transfer tube	30	7.4	57.7	0.2	-40	250	Yes	0.5 to 1 CFM	>0	< -0.2367	1.36	>90
5588864	5567571	Oil drain tube	20.2	9.6	44									
5589463	5588854	Fuel drain tube	11	5	36.2	0.045		266	Yes	> 33 L/h				
5592641	5590792	Oil drain tube	19.1	9.75	42.5	0.2	-40	250	Yes	> 35 mL/min	>0	< -13.8		
4998310	4325210	Oil drain tube	19.05	8.8	43.4		-40	257			>0	< -0.1867	53.5	51.33

- None of these check valves meet criteria
 - No closing pressure magnitude is lower than current check valve
 - Closing pressure instrumentation not accurate due to low pressure measurements
 - Neither flow-tested check valve has a similar flow rate to current valve
- Conduct test on other check valve part numbers using written procedure

Solution Validation – New Tube Material

- Evaluated properties of alternate materials to find a replacement material
 - Current material: ASTM PA12
- Must have a maximum operating temperature above 130 C
- Material comparison chart:

Material	Applicable Standards	Ductile			Min. operating	Oil and water	Piece price with material	
		material?	hose?	temperature [C]	temperature [C]	compatible?		
ASTM PA12	ASTM F2785, MPAPS F-7134	Yes	Yes	82	-40	Yes	\$7.43	
ASTM PA1010	2017-01-0490, MPAPS F-7134	Yes	Yes	N/A	N/A	Yes		
Flexible reinforced silicone hose	25042	Yes	No. a	219	-54	Yes, ASTM D6210	High cost, premium material	
Fluorosilicone liner	25043	Yes		219	-54	Yes, ASTM D6210	High cost, premium material	
HNBR - GH100	From Eaton, N/A	Yes	No	150	-40	Yes		
HNBR - GH101	From Eaton, N/A	Yes	No	150	-40	Yes		
Silicone	Neteusilable	Yes	Var					
Peroxide-cured FKM liner	Not available	Yes	Yes					
Reinforced silicone	25055	Yes		150		Yes	High cost, premium material	
Compounded fluorocarbon liner	25055	Yes	Yes	150		No	High cost, premium material	
Silicone rubber (VMQ)	Silicone rubber: 23274,	Yes	Vee	180	-54	Yes		
Fluorosilicone liner	Fluorosilicone liner: 25043	Yes	Yes	219	-54	Yes, ASTM D6210		

Solution Validation – New Tube Material

- Chosen material: Silicone rubber (VMQ) with fluorosilicone liner
- Disqualifying features of other materials:
 - · Fails to meet the max operating temperature needed
 - Not a formable hose
 - Incompatible with oil or coolant
 - Is a premium material that would likely yield a high cost
- Favorable qualities to prevent embrittlement:
 - Large operating temperature range with high maximum
 - Compatible with oil and coolant used
- Favorable qualities to prevent failure due to embrittlement:
 - High tensile strength, high strain at break or yield
 - Low modulus of elasticity

My Recommendation

- New check valve identification
 - If possible, retest these check valves and others with my procedure and more precise instrumentation to determine pressure needed to close check valve
 - Find a check valve that closes at a lower pressure magnitude than current valve
 - Check valve pressure testing does not suggest that new / undamaged current check valves allow a significant level reverse flow
 - May have to re-evaluate initial failure mode investigation
 - If current check valves do not allow reverse flow as determined by vacuum pressure re-test, determine conditions in operation that cause check valve to either allow reverse flow or not open for a positive pressure difference
- New material implementation
 - Obtain quote from drain tube supplier for chosen new tube material, create CR
 - If supplier does not confirm that this material is adequate, evaluate new materials

Cummins

